A nested variational time discretization for parametric Willmore flow
نویسندگان
چکیده
منابع مشابه
A Nested Variational Time Discretization for Parametric Anisotropic Willmore Flow
A variational time discretization of anisotropic Willmore flow combined with a spatial discretization via piecewise affine finite elements is presented. Here, both the energy and the metric underlying the gradient flow are anisotropic, which in particular ensures that Wulff shapes are invariant up to scaling under the gradient flow. In each time step of the gradient flow a nested optimization p...
متن کاملA Nested Variational Time Discretization for Parametric Willmore Flow
A novel variational time discretization of isotropic and anisotropic Willmore flow combined with a spatial parametric finite element discretization is applied to the evolution of polygonal curves and triangulated surfaces. In the underlying natural approach for the discretization of gradient flows a nested optimization problem has to be solved at each time step. Thereby, an outer variational pr...
متن کاملTwo Step Time Discretization of Willmore Flow
Based on a natural approach for the time discretization of gradient flows a new time discretization for discrete Willmore flow of polygonal curves and triangulated surfaces is proposed. The approach is variational and takes into account an approximation of the L-distance between the surface at the current time step and the unknown surface at the new time step as well as a fully implicity approx...
متن کاملComputational parametric Willmore flow
We propose a new algorithm for the computation of Willmore flow. This is the L2-gradient flow for the Willmore functional, which is the classical bending energy of a surface. Willmore flow is described by a highly nonlinear system of PDEs of fourth order for the parametrization of the surface. The spatially discrete numerical scheme is stable and consistent. The discretization relies on an adeq...
متن کاملParametric Approximation of Willmore Flow and Related Geometric Evolution Equations
We present various variational approximations of Willmore flow in Rd, d = 2, 3. As well as the classic Willmore flow, we consider also variants that are (a) volume preserving and (b) volume and area preserving. The latter evolution law is the so-called Helfrich flow. In addition, we consider motion by Gauß curvature. The presented fully discrete schemes are easy to solve as they are linear at e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interfaces and Free Boundaries
سال: 2012
ISSN: 1463-9963
DOI: 10.4171/ifb/287